Chapter 06: Energy Relationships in Chemical Reactions

1. Radiant energy is

A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that comes from the sun.
D) energy available by virtue of an object's position.
3. Chemical energy is
A) the energy stored within the structural units of chemical substances.
B) the energy associated with the random motion of atoms and molecules.
C) solar energy, i.e. energy that comes from the sun.
D) energy available by virtue of an object's position.
5. Heat is
A) a measure of temperature.
B) a measure of the change in temperature.
C) a measure of thermal energy.
D) a measure of thermal energy transferred between two bodies at different temperature.
7. An exothermic reaction causes the surroundings to
A) warm up.
D) decrease its temperature.
B) become acidic.
E) release CO_{2}.
C) expand.
9. Calculate the amount of heat necessary to raise the temperature of 12.0 g of water from $15.4^{\circ} \mathrm{C}$ to $93.0^{\circ} \mathrm{C}$. The specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) 0.027 J
B) 324 J
C) 389 J
D) 931 J
E) $3,890 \mathrm{~J}$
11. A beaker contains 115 g of ethanol at $18.2^{\circ} \mathrm{C}$. If the ethanol absorbs 1125 J of heat without losing heat to the surroundings, what will be the final temperature of the ethanol? The specific heat of ethanol is $2.46 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $4.08^{\circ} \mathrm{C}$
B) $14.1^{\circ} \mathrm{C}$
C) $18.4^{\circ} \mathrm{C}$
D) $22.2^{\circ} \mathrm{C}$
E) $\quad 36.4^{\circ} \mathrm{C}$
13. If 325 g of water at $4.2^{\circ} \mathrm{C}$ absorbs 12.28 kJ , what is the final temperature of the water? The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$.
A) $4.21^{\circ} \mathrm{C}$
B) $4.8^{\circ} \mathrm{C}$
C) $9.0^{\circ} \mathrm{C}$
D) $13.2^{\circ} \mathrm{C}$
E) $2,938^{\circ} \mathrm{C}$
15. A piece of copper with a mass of 218 g has a heat capacity of $83.9 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What is the specific heat of copper?
A) $0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
B) $1.83 \times 10^{4} \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
C) $\quad 2.60 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
D) $\quad 1.32 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
E) $\quad 24.5 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
17. Suppose a 50.0 g block of silver (specific heat $=0.2350 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) at $100^{\circ} \mathrm{C}$ is placed in contact with a 50.0 g block of iron (specific heat $=0.4494 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$) at $0^{\circ} \mathrm{C}$, and the two blocks are insulated from the rest of the universe. The final temperature of the two blocks
A) will be higher than $50^{\circ} \mathrm{C}$.
B) will be lower than $50^{\circ} \mathrm{C}$.
C) will be exactly $50^{\circ} \mathrm{C}$.
D) is unrelated to the composition of the blocks.
E) cannot be predicted.
19. Naphthalene combustion can be used to calibrate the heat capacity of a bomb calorimeter. The heat of combustion of naphthalene is $-40.1 \mathrm{~kJ} / \mathrm{g}$. When 0.8210 g of naphthalene was burned in a calorimeter containing 1,000 . g of water, a temperature rise of $4.21^{\circ} \mathrm{C}$ was observed. What is the heat capacity of the bomb calorimeter excluding the water?
A) $32.9 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
B) $7.8 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
C) $3.64 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
D) $1.76 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
E) $15.3 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$
21. A $100 . \mathrm{mL}$ sample of 0.200 M aqueous hydrochloric acid is added to 100 mL of 0.200 M aqueous ammonia in a calorimeter whose heat capacity (excluding any water) is 480 . J/K. The following reaction occurs when the two solutions are mixed.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \quad \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
The temperature increase is $2.34^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}$ per mole of HCl and NH_{3} reacted.
A) $154 \mathrm{~kJ} / \mathrm{mol}$
B) $1.96 \mathrm{~kJ} / \mathrm{mol}$
D) $-1.96 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-154 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 485 \mathrm{~kJ} / \mathrm{mol}$
23. To which one of the following reactions occurring at $25^{\circ} \mathrm{C}$ does the symbol $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})\right]$ refer?
A) $\quad 2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{g})+4 \mathrm{O}(\mathrm{g}) \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
B) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
C) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow \quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g})$
D) $\quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{S}(\mathrm{s})+4 \mathrm{O}(\mathrm{g})$
E) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})$
25. When 0.560 g of $\mathrm{Na}(\mathrm{s})$ reacts with excess $\mathrm{F}_{2}(\mathrm{~g})$ to form $\mathrm{NaF}(\mathrm{s}), 13.8 \mathrm{~kJ}$ of heat is evolved at standard-state conditions. What is the standard enthalpy of formation $\left(\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\right)$ of NaF (s)?
A) $\quad 24.8 \mathrm{~kJ} / \mathrm{mol}$
B) $570 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-24.8 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-7.8 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-570 \mathrm{~kJ} / \mathrm{mol}$
27. Ethanol undergoes combustion in oxygen to produce carbon dioxide gas and liquid water. The standard heat of combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$, is $-1366.8 \mathrm{~kJ} / \mathrm{mol}$. Given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, what is the standard enthalpy of formation of ethanol?
A) $3,010 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-687.6 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-277.6 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad 687.6 \mathrm{~kJ} / \mathrm{mol}$
E) $1,367 \mathrm{~kJ} / \mathrm{mol}$
29. Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ undergoes combustion according to the following thermochemical equation:
$2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-11,020 \mathrm{~kJ} / \mathrm{mol}$.
Given that $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$, calculate the standard enthalpy of formation of octane.
A) $\quad-210 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-11,230 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 22,040 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-420 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 420 \mathrm{~kJ} / \mathrm{mol}$
31. Styrene, $\mathrm{C}_{8} \mathrm{H}_{8}$, is one of the substances used in the production of synthetic rubber. When styrene burns in oxygen to form carbon dioxide and liquid water under standard-state conditions at $25^{\circ} \mathrm{C}, 42.62 \mathrm{~kJ}$ are released per gram of styrene. Find the standard enthalpy of formation of styrene at $25^{\circ} \mathrm{C}$.
(Given: $\quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-393.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=$ $-241.8 \mathrm{~kJ} / \mathrm{mol}$)
A) $323.8 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-4249 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-8730 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-636.7 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 147.8 \mathrm{~kJ} / \mathrm{mol}$
33. Calculate the standard enthalpy of formation of liquid methanol, $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$, using the following information:
C (graph) $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+(3 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=-726.4 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad-1,691.5 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-238.7 \mathrm{~kJ} / \mathrm{mol}$
D) $47.1 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-47.1 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 1691.5 \mathrm{~kJ} / \mathrm{mol}$
35. During volcanic eruptions, hydrogen sulfide gas is given off and oxidized by air according to the following chemical equation:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Calculate the standard enthalpy change for the above reaction given:
$3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=146.9 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-296.4 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad-1036.1 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-742.3 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-149.5 \mathrm{~kJ} / \mathrm{mol}$
D) $443.3 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 742.3 \mathrm{~kJ} / \mathrm{mol}$
37. Given the thermochemical equation $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}_{\mathrm{rxn}}{ }^{=}=-198 \mathrm{~kJ} / \mathrm{mol}$, what is the standard enthalpy change for the decomposition of one mole of SO_{3} ?
A) $198 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-99 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 99 \mathrm{~kJ} / \mathrm{mol}$
D) $396 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-198 \mathrm{~kJ} / \mathrm{mol}$
39. Pentaborane $\mathrm{B}_{5} \mathrm{H}_{9}(\mathrm{~s})$ burns vigorously in O_{2} to give $\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. Calculate $\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}$ for the combustion of 1 mol of $\mathrm{B}_{5} \mathrm{H}_{9}$.
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})\right]=-1,273.5 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{B}_{5} \mathrm{H}_{9}(\mathrm{~s})\right]=73.2 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-285.8 \mathrm{~kJ} / \mathrm{mol}$
A) $\quad-1,2735 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad-4,543 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad-18,170 \mathrm{~kJ} / \mathrm{mol}$
D) $\quad-9,086 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-8,448 \mathrm{~kJ} / \mathrm{mol}$
41. The combustion of butane produces heat according to the equation $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-5,314 \mathrm{~kJ} / \mathrm{mol}$ What is the heat of combustion per gram of butane?
A) $\quad-32.5 \mathrm{~kJ} / \mathrm{g}$
B) $\quad-45.7 \mathrm{~kJ} / \mathrm{g}$
C) $\quad-91.5 \mathrm{~kJ} / \mathrm{g}$
D) $\quad-2,656 \mathrm{~kJ} / \mathrm{g}$
E) $\quad-15,440 \mathrm{~kJ} / \mathrm{g}$
43. The combustion of butane produces heat according to the equation
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-5,314 \mathrm{~kJ} / \mathrm{mol}$
How many grams of butane must be burned to release $1.00 \times 10^{4} \mathrm{~kJ}$ of heat?
A) 30.9 g
B) 61.8 g
C) 109 g
D) 153 g
E) 219 g
45. Given that $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}), \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-64.8 \mathrm{~kJ} / \mathrm{mol}$, how many grams of CaO must react in order to liberate 525 kJ of heat?
A) 6.92 g
B) 56.1 g
C) 455 g
D) 606 g
E) $3.40 \times 10^{4} \mathrm{~g}$
47. An average home in Colorado requires 20. GJ of heat per month. How many grams of natural gas (methane) must be burned to supply this energy?
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-890.4 \mathrm{~kJ} / \mathrm{mol}$
A) $1.4 \times 10^{3} \mathrm{~g}$
B) $3.6 \times 10^{5} \mathrm{~g}$
C) $\quad 7.1 \times 10^{-4} \mathrm{~g}$
D) $2.2 \times 10^{4} \mathrm{~g}$
E) $1.4 \times 10^{4} \mathrm{~g}$
49. Determine the heat given off to the surroundings when 9.0 g of aluminum reacts according to the equation $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}, \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-849 \mathrm{~kJ} / \mathrm{mol}$.
A) $7.6 \times 10^{3} \mathrm{~kJ}$
B) $2.8 \times 10^{2} \mathrm{~kJ}$
C) $\quad 1.4 \times 10^{2} \mathrm{~kJ}$
D) $5.6 \times 10^{2} \mathrm{~kJ}$
E) $2.5 \times 10^{3} \mathrm{~kJ}$
51. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ burns according to the equation
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-1367 \mathrm{~kJ} / \mathrm{mol}$.
How much heat is released when 35.0 g of ethanol is burned?
A) $1,797 \mathrm{~kJ}$
B) $1,367 \mathrm{~kJ}$
C) $9.61 \times 10^{-4} \mathrm{~kJ}$
D) $4.78 \times 10^{4} \mathrm{~kJ}$
E) 1,040 kJ
53. Calcium oxide and water react in an exothermic reaction:
$\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=-64.8 \mathrm{~kJ} / \mathrm{mol}$
How much heat would be liberated when $7.15 \mathrm{~g} \mathrm{CaO}(\mathrm{s})$ is dropped into a beaker containing $152 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?
A) $1.97 \times 10^{-3} \mathrm{~kJ}$
B) 8.26 kJ
C) 508 kJ
D) 547 kJ
E) 555 kJ
55. At $25^{\circ} \mathrm{C}$, the standard enthalpy of formation of $\mathrm{KCl}(\mathrm{s})$ is $-435.87 \mathrm{~kJ} / \mathrm{mol}$. When one mole of $\mathrm{KCl}(\mathrm{s})$ is formed by reacting potassium vapor and chlorine gas at $25^{\circ} \mathrm{C}$, the standard enthalpy of reaction is $-525.86 \mathrm{~kJ} / \mathrm{mol}$. Find $\Delta \mathrm{H}^{\circ}$ for the sublimation of potassium, $\mathrm{K}(\mathrm{s}) \rightarrow \mathrm{K}(\mathrm{g})$, at $25^{\circ} \mathrm{C}$.
A) $\quad-345.88 \mathrm{~kJ} / \mathrm{mol}$
B) $\quad 45.00 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 345.88 \mathrm{~kJ} / \mathrm{mol}$
D) $89.99 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad-525.86 \mathrm{~kJ} / \mathrm{mol}$
57. According to the first law of thermodynamics:
A) Energy is neither lost nor gained in any energy transformations.
B) Perpetual motion is possible.
C) Energy is conserved in quality but not in quantity.
D) Energy is being created as time passes. We have more energy in the universe now than when time began.
59. The enthalpy change when a strong acid is neutralized by strong base is $-56.1 \mathrm{~kJ} / \mathrm{mol}$. If 135 mL of 0.450 M HI at $23.15^{\circ} \mathrm{C}$ is mixed with 145 mL of 0.500 M NaOH , also at $23.15^{\circ} \mathrm{C}$, what will be the maximum temperature reached by the resulting solution? (Assume that there is no heat loss to the container, that the specific heat of the final solution is $4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$, and that the density of the final solution is that of water.)
A) $26.06^{\circ} \mathrm{C}$
B) $29.19^{\circ} \mathrm{C}$
C) $32.35^{\circ} \mathrm{C}$
D) $20.24^{\circ} \mathrm{C}$
E) $36.57^{\circ} \mathrm{C}$
61. Calculate the amount of work done, in joules, when 2.5 mole of $\mathrm{H}_{2} \mathrm{O}$ vaporizes at 1.0 atm and $25^{\circ} \mathrm{C}$. Assume the volume of liquid $\mathrm{H}_{2} \mathrm{O}$ is negligible compared to that of vapor. (1 $\mathrm{L} \cdot \mathrm{atm}=101.3 \mathrm{~J}$)
A) $6,190 \mathrm{~kJ}$
B) 6.19 kJ
C) 61.1 J
D) 5.66 kJ
E) 518 J
63. Calculate the amount of work done against an atmospheric pressure of 1.00 atm when 500.0 g of zinc dissolves in excess acid at $30.0^{\circ} \mathrm{C}$.
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
A) $\quad \mathrm{w}=+22.4 \mathrm{~kJ}$
B) $\mathrm{w}=+24.9 \mathrm{~kJ}$
C) $w=0$
D) $\quad \mathrm{w}=-2.52 \mathrm{~kJ}$
E) $\quad \mathrm{w}=-19.3 \mathrm{~kJ}$
65. Which of the following processes always results in an increase in the energy of a system?
A) The system loses heat and does work on the surroundings.
B) The system gains heat and does work on the surroundings.
C) The system loses heat and has work done on it by the surroundings.
D) The system gains heat and has work done on it by the surroundings.
E) None of these is always true.
67. For which of these reactions will the difference between $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{E}^{\circ}$ be the smallest?
A) $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B) $4 \mathrm{PH}_{3}(\mathrm{~g}) \rightarrow \mathrm{P}_{4}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})$
C) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
D) $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
E) $\quad \mathrm{P}_{4}(\mathrm{~s})+10 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PCl}_{5}(\mathrm{~s})$
69. The bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond is equal to $\Delta \mathrm{H}^{\circ}$ for the reaction
$\mathrm{BrCl}(\mathrm{g}) \rightarrow \mathrm{Br}(\mathrm{g})+\mathrm{Cl}(\mathrm{g})$.
Use the following data to find the bond enthalpy of the $\mathrm{Br}-\mathrm{Cl}$ bond.

$$
\begin{array}{ll}
\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=30.91 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=192.9 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=243.4 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{Br}_{2}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=29.2 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

A) $219.0 \mathrm{~kJ} / \mathrm{mol}$
B) $203.5 \mathrm{~kJ} / \mathrm{mol}$
C) $\quad 14.6 \mathrm{~kJ} / \mathrm{mol}$
D) $438.0 \mathrm{~kJ} / \mathrm{mol}$
E) $\quad 407.0 \mathrm{~kJ} / \mathrm{mol}$
71. The heat of solution of ammonium chloride is $15.2 \mathrm{~kJ} / \mathrm{mol}$. If a 6.134 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ is added to 65.0 mL of water in a calorimeter at $24.5^{\circ} \mathrm{C}$, what is the minimum temperature reached by the solution? (The specific heat of water $=4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$; the heat capacity of the calorimeter $=365 . \mathrm{J} /{ }^{\circ} \mathrm{C}$.)
A) $27.1^{\circ} \mathrm{C}$
B) $18.6^{\circ} \mathrm{C}$
C) $19.7^{\circ} \mathrm{C}$
D) $21.9^{\circ} \mathrm{C}$
E) $\quad 30.4^{\circ} \mathrm{C}$
73. Ozone $\left(\mathrm{O}_{3}\right)$ in the atmosphere can be converted to oxygen gas by reaction with nitric oxide (NO). Nitrogen dioxide is also produced in the reaction. What is the enthalpy change when 8.50 L of ozone at a pressure of 1.00 atm and $25^{\circ} \mathrm{C}$ reacts with 12.00 L of nitric oxide at the same initial pressure and temperature? $\left[\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{NO})=90.4 \mathrm{~kJ} / \mathrm{mol}\right.$; $\left.\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{NO}_{2}\right)=33.85 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{O}_{3}\right)=142.2 \mathrm{~kJ} / \mathrm{mol}\right]$
A) -69.2 kJ
B) -19.7 kJ
C) -1690 kJ
D) $\quad-97.6 \mathrm{~kJ}$
E) -167 kJ

