MS 2000 Manual

(**Hydro 2000S**)

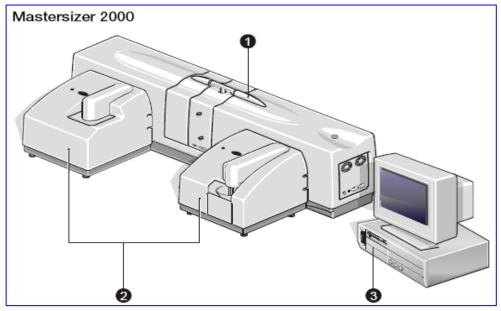
Malvern Korea

목 차

- 1. 개 요 (MS 2000)
- 2. 장비소개 및 기능 (Dispersion unit)
- 3. 측정 원리(Principle)
- 4. 측정절차(Operating Procedure)
- 5. 분석결과 Data 해석 및 이해

1. 개요

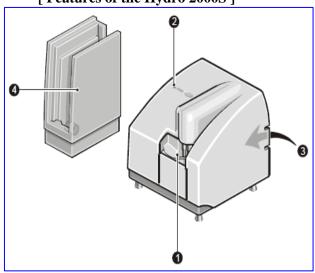
- 1) MS2000은 Dispersant에 분말(Powder)/액상(Liqiud)의 물질을 Suspension 시켜 그 입자의 Mean Particle size 및 입도 분포를 측정 할 수 있게 고안되어진 장비
- 2) 레이저 회절(Laser Diffraction)방법에 Mie theory을 적용하여 측정 (ISO 13320-1)
- 3) 입자 형상에 관계없이 측정물질과 동일한 부피를 가지는 구의 직경을 측정
- 4) 2가지의 Dispersion type(Wet, Dry)으로 측정가능
- 5) 용량/용도, 자동여부에 따라 분산장치(Dispersion unit) 선택
 - Wet: Hydro 2000 (G, S, MU, SM, uP)
 - Dry: Scirocco 2000
- 6) Specification (Optical bench)
 - Size range(2000) : 0.02 ~ 2,000 um (시료의 물성에 따라 다름)


(2000E): 0.1 ~ 1,000 um (시료의 물성에 따라 다름)

- Light sources : Red (He-Ne laser : 633 nm)

Blue (Solid state light source: 466 nm) - MS 2000 only

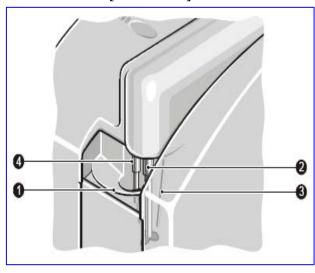
- Detector : 52 개 (Forward, Side, Back scattering)
- Power: 110/240V, 50/60Hz, 60VA
- Dimensions: Length (1293mm), Depth(255mm), Height(375mm)
- Weight : 35kg


7) Typical systems

- ① Optical bench
- ② One or more sample dispersion units (습,건식 동시 사용 가능)
- ③ Computer system

2. 장비 소개 및 기능(Dispersion unit)

[Features of the Hydro 2000S]



- ① Tank area : Sample을 분산
- 2 Status indicator
 - : 작동하고 있을때 녹색불, Standby 상태일때는 적색불
- **3** Rear panel
- ④ Cell holder: 장기 미사용시 Cell 보관,

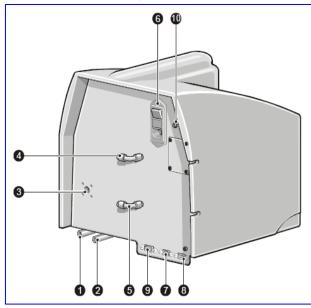
먼지가 Cell window에

쌓이는것을 방지

[Tank area]

- ① Tank: 용량 150ml
- ② Pump/Stirrer: Sample/dispersant 교반
- (취 1. Pump/Stirrer가 작동되고 있을때 손가락을 넣지 말아야 한다.
 - 2. Tank가 비어있는 상태에서는

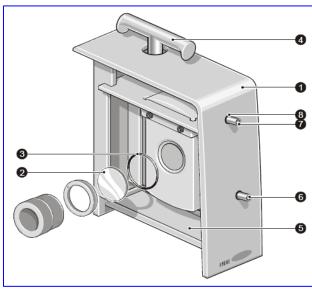
Pump/Stirrer의 speed를 1750 이하로 유지


- ③ Ultrasonic probe: 시료의 분산을 도와줌
- ㈜ 1. Ultrasonic 작동시 손을 넣지 말아야한다.
- (4) Level sensor

: 분산제 마다 각각의 Threshold값을 입력

Water (default) : 64%
White spirit : 35%
Propanol-2-ol : 64%
2-2-4 Trimethyl pentane : 36%

[Rear panel]

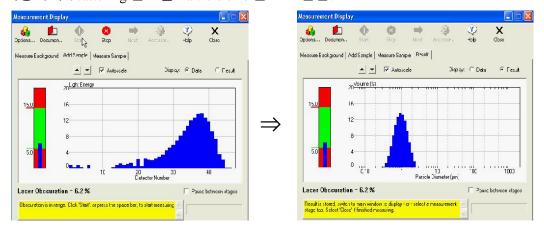


- ① **Drain and overflow**: drain pipe는 2m 이하, 꼬여있거나 굴곡이 있으면 안됨
- **②** Dispersion input port

: 자동으로 Dispersant 연결시 사용

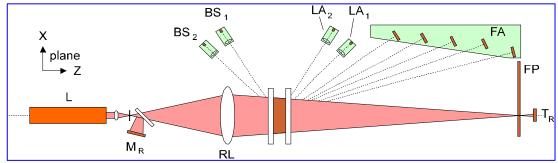
- (3) Tank fill rate
 - : 분산제의 tank 주입 속도 조절(약 6초)
- 4 "From cell" pipe
 - : Flow cell의 "Cell out"에 연결
- ⑤ "To cell" pipe: Flow cell의 "Cell in"에 연결
- 6 Mains power supply: Main 전원 스위치
- ⑦ Accessory comms "in" connector
 - : optical bench로부터 연결
- **8** Accessory comms "out" connector
 - : 다른 Dispersion unit or Termination plug 연결
- **9** Auxiliary connector: 사용 안함
- ⑩ Manual drain: 수동으로 drain시킬때 사용 (버튼을 누른상태로 유지)

[Flow cell]

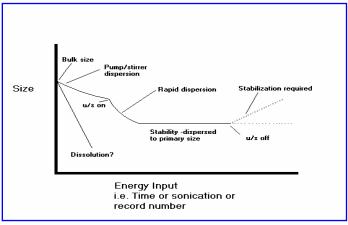


- 1 Cell shroud
- 2 Cell windows
 - : 바깥쪽면 코팅(Lens tissue로 청소)
- **3** Cell window seals
 - : 수용성(검은색/붉은색), 유기용매(녹색)
- **4** Locking handle
 - : 열림(시계방향)
- **5** Drip tray
- ⑥ "Cell in" connector: "To cell"에 연결
- ⑦ "Cell out" connector: "From cell"에 연결
- **8** Pipe grommets

: 빛이 측정영역에 들어가는것을 방지


3. Principle

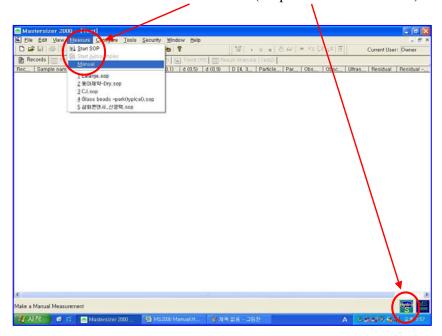
- 1) Laser가 Air comperssor에 의해 분산되어진 시료를 통과 하여 회절현상을 일으킴.
- 2) 이러한 입자와 Laser사이에 발생하는 회절각과 particle size 간의 연관관계를 이용하여 Scattering 분포를 Particle size 분포로 변환.



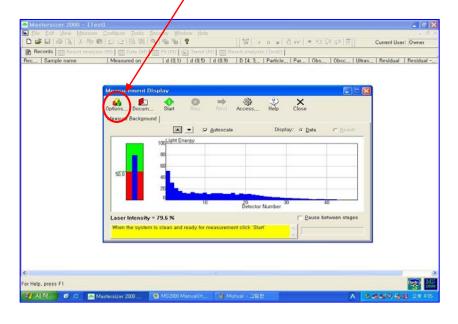
3) 이들 입자들의 size는 회절각 뿐만 아니라 굴절되는 빛의 양에 의해서도 측정. (Mie theory)

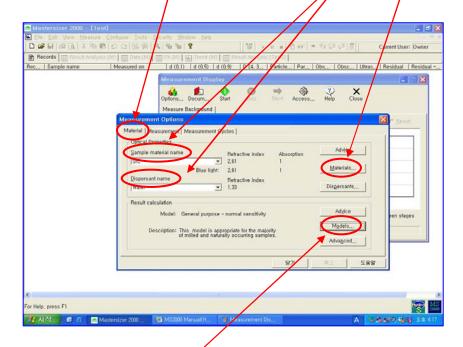
Opical bench (MS 2000)

4) Hydro S (Wet dispersion-Basic theory)

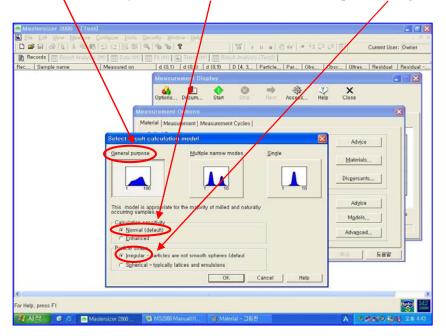


4. Operating Procedure (Manual)

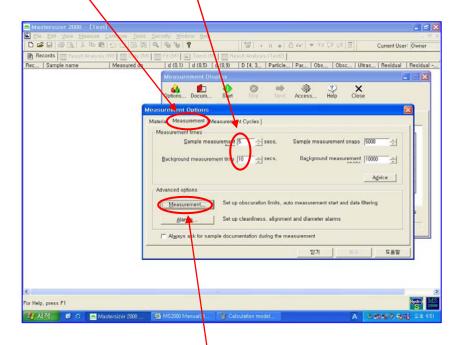

- 1) 컴퓨터 / Mastersizer 2000 / Hydro 2000S On
- 2) 바탕화면의 Mastersizer 2000 클릭


3) Main menu중 Measure 에서 Manual 클릭(Dispersion unit 연결 확인)

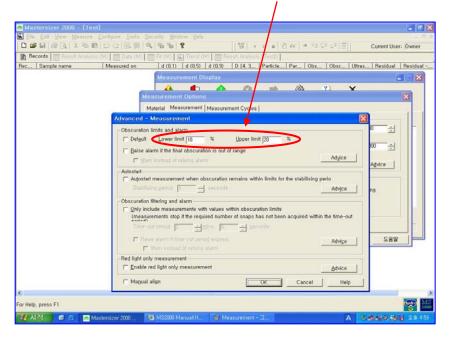
4) Measurement Display에서 Options 클릭

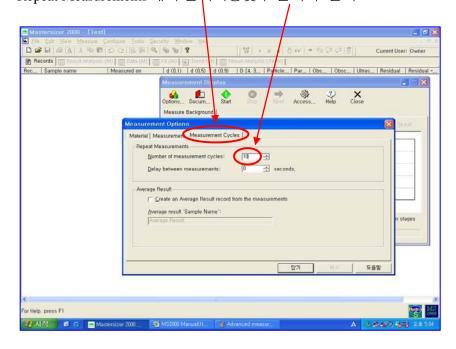


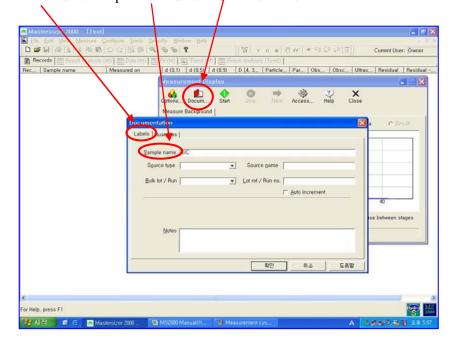
5) Measurement Options중 Material 선택 후 Sample material name / Dispersant name 선택 (시료의 굴절율/흡광도값을 직접 입력해야 하는 경우는 Material 선택후 생성) (시료에 대한 정보가 없는 경우는 Default 선택)



6) Result calculation에서 Models 클릭 (General purpose 선택)

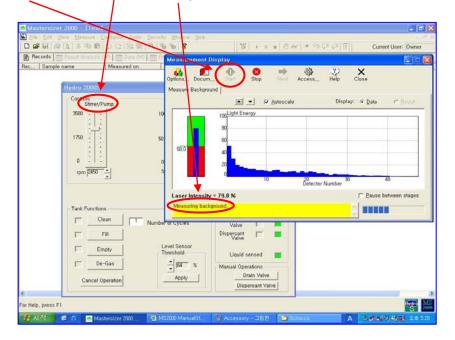

(Calculation sensitivity에서 Normal(default) / Particle shape에서 Irregular 선택 후 OK)


7) Measurement 에서 Measurement times 입력
(Sample measurement time : 3s, Background measurement time : 10s)
(시간을 오래할수록 재현성이 좋아지나, 많은 시간 소요)


8) Advanced options 에서 Measurement 클릭
(Obscuration limits 값 입력 → Lower limit:10%, Upper limit:20%)

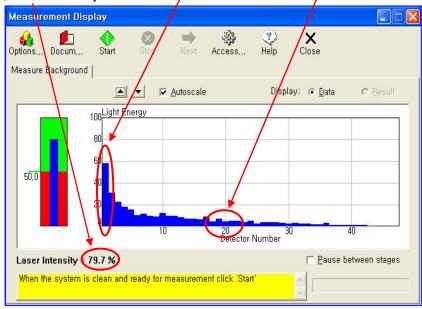
9) Measurement Options에서 Measurement Cycles 선택 Repeat Measurements 에서 반복측정횟수 입력 후 닫기

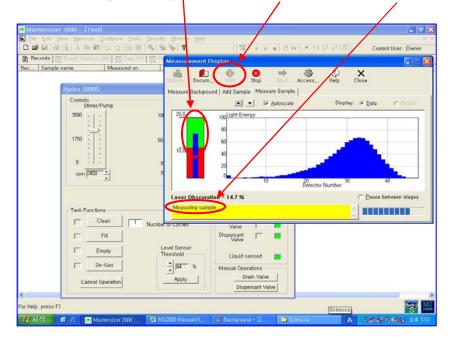
10) Measurement Display에서 Documentation 클릭 Labels에서 Sample name에 시료명 입력 후 확인



11) Measurement Display에서 Accessory 클릭 Controls에서 Stirr/Pump(0~3500ppm) 및 Ultrasound(0~100%) 입력 (시료의 상태에 따라 조절)

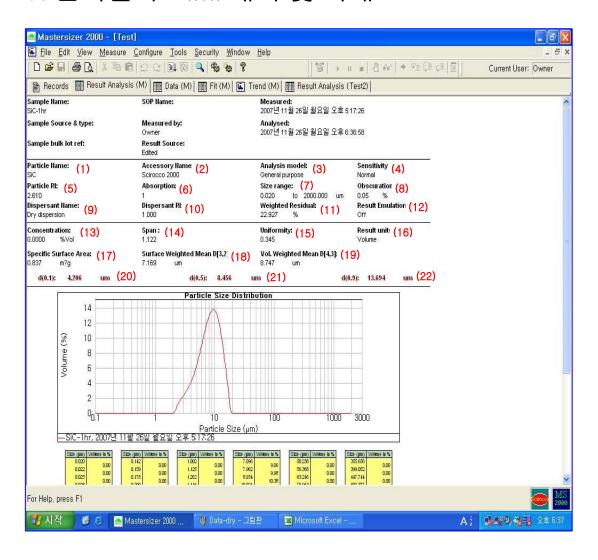
Tank functions : Dispersant과 Dispersion unit이 연결되어 있을때 자동으로 작동가능 Manual operarions : 수동으로 Drain/Dispersant valve 작동시 사용


12) Controls에서 Stirr/pump 조절(비중이 낮은시료:2000중반, 높은시료:3000이상) Start 버튼을 클릭하여 Background를 측정


Background check

1) Light Energy : Detector Number가 커질수록 작아짐(모양이 이상시 Cleaning 필요) 1 번 Detector 100 이하(Dry : 약간 높음), 20번 Detector 20 이하 유지

2) Laser Intensity : 기기마다 ❖ 이하지만 대략 75% **炒**상 유지



13) Add Sample에서 시료를 녹색범위에 올때까지 주입 시료가 적당량(녹색범위)에 들어갔을때 Start 버튼을 클릭, 시료 측정

14) 측정 완료 후 내부에 남아있는 시료를 제거, Cleaning한 후 다음시료 측정

5. 분석결과 Data 해석 및 이해

- (1) Particle Name: 측정시료의 물질명
- (2) Accessory Name: 분산장치명 (ex, Scirocco 2000, Hydro S, ...)
- (3) **Analysis models**: Calculation 모⊆(ex, General purpose, Multiple narrow modes...)
- (4) **Sensitivity**: Calculation 감도(ex, Normal, Enhanced)
- (5) **Particle RI**: 측정시료의 굴절율(ex, 1.52(default), 1.65, 1.75, ...)
- (6) **Absorption**: 측정시료의 흡광도(ex, 1, 0.1, 0.01, ...)
- (7) **Size range**: 측정결과의 입도범위(ex, 0.020 to 2000.000um)
- (8) Obscuration: 시료에 의해 Laser가 얼마나 차페되는지를 나타냄(시료의 농도와 비례)

Wet: 5~20%(시료에 따라 조절), Dry: 0.6~5%

(9) **Dispersant Name**: 분산제의 종류(ex, Dry dispersion, Water, ...)

- (10) **Dispersant RI**: 분산제의 굴절율(ex, 1.33(water), 1.00(Dry dispersion), ...)
- (11) Weighted Residual: 계산된 결과가 측정 데이터와 얼마나 잘 들어 맞는지를 나타냄 2% 이하: Good, 2% 이상: 시료의 굴절율이나 흡광도 또는 분산제의 굴절율값이 올바르지 않다는 것임
- (12) Result Emulation: 다른 입도측정방법으로 결과를 수정
- (13) Concentration: 고체시료의 부피농도 % (Beer-Lambert법칙에 의해 계산)
- (14) **Span** : 시료의 분포폭(분포가 좁을수록 작게 나타남) **Span** = [D (v, 0.9) - D (v, 0.1)] / D (v, 0.5)
- (15) **Uniformity**: D(v,0.5)에 대한 절대편차
- (16) **Result units**: 결과의 단위(ex, Volume, Surface, ...)
- (17) Specific Surface Area(SSA): 비표면적(입자들의 총면적을 총부피로 나누어준값)

SSA = 6 / p D [3,2] (여기서, p: 입자의 밀도)

입자는 기공이 없는 구형이라 가정하에 계산된값 (m^2/g)

- (18) **Surface Weighted Mean D[3,2]**: 면적평균, Sauter Mean
- (19) Volume Weighted Mean D[4,3]: 체적평균
- (20) **d(0.1)**: 전체 입도분포에서 10% 일때의 크기
- (21) d(0.5): 전체 입도분포에서 50% 일때의 크기, 중위수(Median)
- (22) **d(0.9)** : 전체 입도분포에서 90% 일때의 크기